Monthly Archives: May 2016

Bidirectional switchable 40m wire yagi

I switched on the other evening and heard a very quiet DX caller on 7.142. It was YC0LOU from Indonesia and I could only pick up parts of his call. He called and called and had no takers. In fairness, he was extremely quiet but as the sun was gradually moving around the sky, he finally became audible and it was worth giving him a shout. 400w off my inverted V at 7m height got his attention but I needed a few blasts for him to get my call right. I put him on the cluster and he had a pile up.

Now, the point is, had I had more gain, I’d have not only heard him better, but he’d have heard me quicker too.

So I could add more height to my Inverted V but the difference between 7m and 10m isn’t actually that much at 5 degrees off the horizon – not even a db. Hardly worth writing home about.

40m-wire-yagi-drawingAnyway, this was the QSO that made me sit up and take stock of what I could do. I was seriously considering phased verticals for DX when I thought up the idea of having a switchable wire yagi. Either firing East or firing West.

Like me, you may already have an inverted V dipole up for 40m, all you need to is build another one about a quarterwave in front – or behind your existing dipole but out of a single wire. You don’t need to feed this with coax, it’s a parasitic element, like a 2 element yagi.

Continue reading

How to use dual coax feeders as ladder line

palstar-at4kHaving recently taken delivery of a Palstar AT4K manual tuner, I was keen to get her into production to replace my CG5000 in the attic.

Problem: the route to the attic from the shack is complex but I have a number of spare coax runs going that way including a couple of RG58 cables that I installed about 10 years ago as backups. Actually I originally installed three RG58 lines but I’ve been using one of them to send 12V up the line to the ATU.

parallel-cox-to-ladder-lineAfter MUCH research, I finally used about 20 feet of parallel coax feeders, connecting ladder line to both ends. To clarify, I run about 12 feet of ladder line from the ATU to the parallel RG58 cables. I soldered the ladder line to the inner core of the RG58 coax and shorted the braid-to-braid. My 20 feet of RG58 runs to the attic, through walls, up ceilings etc and in reverse, I connected the ladder line to the RG58. Again, I shorted the braids of each line to each other with a solder blob. My ladder line then has another run to the feedpoint of a large 60m loop that runs through the attic and around the garden.

The results have been quite amazing. Comparing my 40m reference dipole to the the CG5000 (SG230 type) ATU feeding the 60m loop has always shown that the loop was about an S point lower than my reference dipole for most stations.

Continue reading

Working 15m band on a 40m vertical antenna

Note: This article discusses the merits of a 3/4 (three quarter wave) vertical -vs- a 1/4 (quarter wave) antenna.

You can build a 40m vertical quarter wave antenna and ground mount it with 16 x 4m radials and operate it at the third harmonic; 21MHz.

Actually, all my experimentation has shown that if you multiply the quarter wave resonance by 3.03, you’ll have the next available usable band. In this case, if you tune a 40m vertical to 7.00Mhz, you’ll have the whole of the 15m band to play with with a centre-point of 21.300Mhz. Oh, and you’ll still have the whole of 40m band under 1.3:1.

Now here’s the controversy:

Most people who read antenna publications or the ARRL handbook believe that if you actually make this antenna, you’re creating a cloud-burner on 15m.

Technically correct (sort of) – but for DX, wrong.

On the surface, the 10m long 40m vertical that’s used on 21.225MHz does indeed look like a cloud burner. Here it is. 15m band in green -vs- a pure quarter-wave in red).


(click to expand quarter-wave in red, three-quarter wavelength in green)

Continue reading